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ABSTRAC? ‘
) . Ai:npliﬁc;tion of ground motion in three dimensions due to arbitrarily shaped
cylindrical alluvial valleys has been investigated in this paper>> A hybrid numerical
method combining integral representation and finite element discretization has-been”’ s
employed. The incident wave is either a plane P or SV wave, propagating at an arbitrary
angle to the axis of the cylindrical valley. Numerical results showing significant dynamic
amplification are presented for various angles of incidence and two different geometries
of the valleys. fl7 1+ 5. =702 0 2 S p R K, Sy 1

Y P o LT 1
L ; .- . o




INTRODUCTION

One of the basic problems in engineering seismology is the influence of local geo-
logical irregularities on the ground motion caused by propagating seismic waves. Anal-
ysis of many earthquakes ( e.g. Mexico City earthquake 1985,San Fernando earthquake
1971) show that large amplification of ground motion occurs at topographic changes and
when the material properties are softer near the surface than that of the surrounding
medium. Experimental studies by Kagami et al.(1982,1985), King and Tucker(1984),and
Tucker and King(1984) have confirmed this amplification phenomenon. Analytical solu-
tions to this problem have been obtained only for simple geometries (e.g. Trifunac 1973,
Wong and Trifunac 1974a, Sanchez—Sesma and Rosenblueth 1979). Analysis of more
complicated geometries requires numerical techniques such as finite difference and finite
elements. Large geometrical dimensions of geotechnical problems limit the applicability

of these methods usually to some simple situations in two dimensoins.

To avoid the difficulties associated with the discretization of the entire domain
the boundary integral equation method has been found to be effective (Sanchez-Sesma
and Rosenblueth, 1979; Dravinski ,1982a,b,c; Wong, 1982; Dravinski, 1983; Dravinski
and Mossessian, 1987a) for studying geotechnical problems. In this method only the
boundary of the scatterer is being discretized. The main advantage is in the reduction
of the number of unknown variables. However, this method can be usefully applied only
when the material inside the boundary is isotropic and homogeneous (Kobayashi, 1983).

In this paper, we present a hybrid method which combines the advantages of the
finite element technique and the boundary integral method. In the past it has been
applied to study scattering of elastic waves in two dimensions (Franssens and Lagasse
1984 and Shah et al., 1982).
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Here, we study the scattering of elastic waves due to cylindrical alluvial valleys
when the plane of propagation has an arbitrary angle with the axis of the scatterer. Thus
the problem is three dimensional and to our knowledge this has not been investigated

before.

Numerical results are presented for semi—circular and semi-elliptical cylinder-
ical alluvial valleys. The incident plane P and SV waves propagating at arbitrary
angles are considered. Results for the particular case when the direction of incidence
lies in a plane perpendicular to the axis of the cylindrical valley have been found to
agree with previously published results. It is shown that amplification can be larger
for directions of propagation oblique to the axis than when they are perpendicular.

STATEMENT OF THE PROBLEM
Figure 1 shows the geometry of the problem. As shown cylindrical inclusion of arbitrary

surface shape with axis parallel to the y-axis ( not shown ) is perfectly bonded to ho-

mogeneous, isotropic elastic half-space. Let us consider two artificial boundaries C and
B. The medium is, now, divided into two regions. The interior region R, is bounded by
the boundary B and part of the free surface. The exterior region R, is bounded by the
free surface and the contour C and extends to infinity in the x and z directions. The
area between the contours C and B is shared by both regions. All the inhomogeneities

are assumed to lie wthin C.

We consider plane harmonic P or SV wave incident at an arbitrary angle to the

y-axis ( see Fig. 2). Thus the displacement has all three components.

Let u; be the displacement component in the i-th direction in a Cartesian frame
and let T;; be the second order Cauchy stress tensor (i,j = 1,2,3) having time harmonic
behavior of the form e~"“* where, w, is the circular frequency (rad/sec). In each region

u; and T;; satisfy the equation of motion given by Eq. (1),

T'ij,j +p“)2ui = _fi’ (101 = 1’293) (1)
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where p is the mass density, f; is the force per unit volume, and the factor, e~'*, has

been dropped. The stress free boundary conditions along the surface of the half-space

are specified by,
0:: =0
0:: =0
agy = 0.

The scattered field also satisfies the radiation condition at infinity.
(I) The Exterior Region R,

In this region the displacement u; is composed of two parts,
= u® +ul?, (2)

where u§°) is the free—field displacement (including the incident waves and their reflec-

tions from the free surface) and ug") is the contribution of the scattered waves. The

scattered displacement field is represented by a surface integral as discussed below.

Starting with Betti’s reciprocity theorem ( Aki& Richards 1980), a pair of solu-

tions to Eq.(1) for the displacements can be written as

//(L-z-g-y)=£(u-g—z-£)d6- (3)
A

where use has been made of the radiation condition. In the above u, t represent the
displacement and surface traction caused by body forces f, while v, s are the displace-
ment and the surface traction due to body forces g in region R,. The scattered field is
taken to be the first field. The second field is the Green’s solution. The scattered field
has no sources in R,, hence f = 0. For the Green’s displacement field the source is
represented by

g= 5(1-— i)e-i”‘+‘€k"g.-,

where |[(r — ') = \/(z — 2')* + (z — 2')? , ¢; is the unit vector in the i-th direction, and

k2 = w/e;, c2 being the shear wave speed in R,. This represents a line source at (z/, z')
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varying in the y-direction with wavelength 53[7 The expression for the Green's dis-
placement tensor, G,;, and the corresponding stresses, T, i, are presented in Appendix
A. Substituting the expression for g into Eq.(3) and using the divergence theorm ,yields,

dropping the factor e'¢*2v,

W) = $GHTE = D )mde )
C

In writing Eq.(4) the condition of vanishing traction on the free surface z=0 and
the radiation condition at infinity satisfied by the scattered and the Green’s displacement
fields have been utilized. The contour integration is carried out in clockwise direction
and n; are the components of the outward unit normal vector to C. Here we choose
the source points (z',z') to be on the contour B inside R, (Figure 1). This precludes
the singularities arising from evaluating the integral with the source and the observer

at the same location.

Now we apply Eq. (3) to the part of region R;, which includes the scatterer and
bounded by contour C. The two fields are the Green’s field, with its source outside this

region, and the incident field. The incident field has no sources here. This yields

0= f(G"inf) —u?Tii0) (~mi) de. (5)
C

The integration along C is calculated in counterclockwise direction. u§-°) and T}:)

denote the displacement and stress tensor associated with the incident field, respectively.
Reversing the direction of integration of Eq. (5) and adding it to Eq. (4), using Eq.
(2), yields

ui(z',2') = f(GijTjk — u;Tija)nede + u”, (6)
c
Eq. (6) is the integral representation of the total field at any point in the exterior region

R,.




(II) The Interior Region R,

This region encloses all the inhomogeneities and anisotropies. In order to get
the solution in region R; , we use the finite element technique. In this approach, the
area of interest R, is divided into a number of elements. In each element the particle

displacement is given by
ui = {91} {uiu} (7)

I=1,...n n is the number of nodes per element,

and {®,;} is an nx1 column vector representing the shape functions for the ele-

ment,

{8} = (81 &;---@a]T (8)

In Eq.(7) {uiu} is the particle displacement vector corresponding to the nodal points
of each element, T, {-},[-] denote a transpose, a column vector, and a row vector,

respectively. The strain within an element related to the displacement field {u},. is

given by
{e}e = [L][®]{u}, (9)
= [B]{u}., (10)
where [ L ] is an operator matrix _
(£ 0 o
0 i€ 0
o 0 £
(L] = 0 387 i€ (11)
£ 0 £
L€ gz O
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[B] = [L][®] (12)

In order to determine the elemental impedance matrix, let us consider the energy func-

tional E,
E = 1/2///(T.e‘ - pwlu.u®)dzdydz - 1/2//(t3.u§ + tg.ug)ds, (13)
where T and ¢ are stresse and strain column vectors, respectively, defined as

T={T}= [T,,T,,T,,T,,,TuT,,]T

and

€= {e} = [ezzeyyeuezyezzezy]T

tp,up represent, respectively, the traction force and the displacement at the
boundary B. For the purpose of eliminating the intergration over the y—direction, it can

be shown that if one takes the integration over one wavelength A, Eq.(13) becomes
E/\ = 1/2//(T.e‘ - pwlu.u®)dzdz - 1/2 /(ta.u'g + tz.ug)de (14).
The stresses T are related to the strains ¢ by the constitutive equation
{T} = [D]{e}. (15)

Using Eq.(15) and Eq.(7) in Eq.(14) and taking the variation, the equation of motion

for region Ry can be written as

(3o s {ul={3} )




where the elemental impedence matrices Sy are represented by

(Sl = [ [(BT(DIBL. - msH(8cIT @] dods (17
Ae
and the nodal force vector due to applied surface traction,
(¥}, = [(BITIDI@ I {n}de. (19)
C,

Here A. and C. denotes, respectively, the area and the boundary of an element and
{n} is the unit vector normal to C.. [ D ] is 6 x 6 matrix of the element material
elastic ‘constants. It is clear from Eq.(17) that [S]. is hermitian matrix. In Eq.(16)
{ur} and {up} represent the interior and boundary nodal displacements, respectively.
{YB} represent the interaction forces between regions R, and R, at the boundary nodes.

Since there are no forces on the interior nodes, hence {Y;} = 0, and Eq.(16) becomes,
(2]
[SBI Spaj\us)  |\Vs (19)
Thus by using the upper part of Eq.(19), the boundary nodal displacement {ug}
can be related to the interior nodal displacement {u;} as

{ur} = =(Sts)""[Sr8]{uB}. (20)

Now , Eq.(6) and Eq.(19) should be combined in order to solve for the displacement at
the boundary nodes Ng. To achieve this Eq.(6) should be evaluated at the nodes on the
boundary B.

Using the constitutive relation to express T;; and Eq.(7) to present the displace-

ment, Eq.(6) becomes

u(z',2") = (', ) + f([G][D][B,] - [‘PIIT[E]){n}dC] {ur}
LC

+ f ((G](D](Bs] - [‘53]1[2]){"}46] {us}, (21)
LC
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where [B;] = [L][®;] and [Bp] = [L][®8). Evaluating the integrals at all the
nodes Np on the boundary B, Eq.(21) can be written as

{up} = [Apr]{ur} + [ABsl{us} + {«§}, (22)

wher~ [Apr]is 3Np x 3N and [ABB] is 3Np x 3N complex matrices. Substituting
Eq. (20) into Eq. (22), and collecting terms, yields

{us} = —[As1l[S1) ! [Sral{us} + [AsBl{us} + {u§} (23)

Once {up} is solved from Eq. (23) we then use Eq. (20) to find {us}. In the following
we present numerical results for the displacement amglitudes on the surface of the valley.
Numerical Results

Normalization of Variables.

All the variables used in this paper are presented in dimensionless form. The
material properties of the valley are normalized with respect to those of the half space.
For that purpose we have chosen the shear velocity §, and the shear modulus u4, to be
unity, distances are normalized with respect to half the width of the finite element region
H, and the displacements are normalized to the absolute amplitude of the displacement
of the free-field motion (\/Iu(,")P +ul2 + |u{?|2). The normalized frequency ¢ is
defined as

€=k2H

where k; is the shear wave number in the half space. The poisson’s ratio for all the

materials is taken to be 1/3.

Testing the method

Suffeciently general computer code has been written to investigate the three di-

mensional problem. In order to gauge the accuracy of the results we, first, let the
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material of the alluvial valley to have the same properties of the half space. The cal-
culated displacements should be equal to the free field displacements. Deviation from
the free field response is taken as a test of the inaccuracy. When the error was found to
be unacceptable we increased the number of elements in the interior region R,. It was

found that 6 elements per wavelength are suffecient to achieve the required accuracy.

Second, the generality of the program was tested by running the problem of
scattering of plane harmonic P and SV waves by semi-circular alluvial valley when

€ = 0. This is a plane strain problem and was studied by Dravinski and Mossessian

(1987a) for weakly inelastic materials. Figures 3 and 4 show very good agreement of
the results for all the angles of incidence and both types of incident waves ( P and SV

) and € = 7.

Semi — circular alluvial valley.

For semi-circular valley the finite element part is compsed of 190 elements.
Isoparametric elements of 3 and 4 nodes are used. The number of boundary nodes
Np is 29. The number of tke interior nodes Ny is 178. The depth of the finite element
region in the z-direction is taken to be equal to H. The results presented here are for
e = 7 . The area between contours B and C is occupied by one layer of elements. The
shear modulus of the valley u, is taken to be 1/6 and the shear velocity 8, is 1/2. Fig-
ures 5 and 7 show the normalized amplitudes of u,,u,, and 4, when P and SV waves
are incident in a plane making an angle 45 degree with the axis of the valley. Figures 6
and 8 show the corresponding results when the plane of propagation is parallel to the
yz plane. Figure 5 shows large amplification in the y-component of the ground motion
when P wave propagates with §; = 60°. Also, figure 7 shows large amplification when
the angle of incidence of SV wave, 8,, is 30 degree. From figures 5 and 7 it is seen that
uy is generally amplified the most compared with u, and u,. Comparison of Fig. 5-8

shows that, exept when SV wave is incident in the plane of yz, u, is generally amplified
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more. For SV wave incident in the yz-plane one finds large amplification in vertical
displacement when 8; = 60°. Also of interest is to note that larger amplification occur

for incidence in the 45° plane.

Semi — elliptical alluvial valley

In this case different finite element mesh is used. The total number of elements
is 146 , Ng and Ny are equal to 29 and 131, respectively. The ratio of the minor axis
to the major axis is 0.7 and the major axis is along the x-axis. The material of the
semi-elliptical valley has the same properties as that used in the semi-circular case. ¢ is
again taken to be 7. Figures 9 and 10 demonstrate the results for the plane strain case
while figures 11, 12, 13, and 14 show the results for different angles of incidence. It is
seen that larger amplifications occur in a semi-circular valley than in a semi-elliptical
one. Also, it is found that for P-waves amplification increase with 6;, but for SV-waves
they remain about the same first as 9, increases and then decrease. Here the most
amplification of displacements occurs when P wave propagates in a plane parallel to the
axis of valley and §; = 60.a.nd when SV wave propagates in that plane but with angle
6, = 30? In contrast with the semi-circular valley we find that u, is amplified most for
the semi-elliptical valley.

Conclusion

A hybrid numerical method hes been employed to investigate the three dimen-
sional amplification of ground motion due to arbitrarily shaped cylindrical soft valley.
This method combines the integral representation and the finite element techniques.
Numerical results are presented for different angles of incidence. These results show
large local amplification when the plane of propagation is oblique to or contains the
axis of the valley. This finding is rather important, because so far only two-dimensional
problems have been studied. It also shows significant influence of the shapes of the

valley on the ground motion.
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This method is also applicable to study the scattering of SH and Rayleigh waves
and to a layered medium. These results will be communicated later. The very important
feature of this method is that the calculations of Green's function and stresses are
independent of the shape and the material of the valley. This means that for different
shapes of valley and the same frequency the Green’s functions and stresses has to be
calculated only one time. This is the most time consuming part of the solution. This
differs from an indirect boundary integral equation formulated on the boundary of the
scatterer for which Green's tensor has to be recalculated at each change in the geometry

of the scatterer.
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APPENDIX A

Green’s Function and Stresses.

(I) Displacements
o0
= iely — g
Gy = 21m/gne cos ek(z — z')dk
0

[~ <]
2_—/913e“€’ sinek(z — z')dk
0

Gy = 2—;-; 922¢"¢Y cos ek(z — z')dk

931"V sin ek(z - z')dk

/
]

o
Gz = 2—-/9123"" sinek(z — z')dk
0
1 (- -]
Gy = T/gne“f' sinek(z - z')dk
0

Gy = g23¢"Y cos ek(z - z')dk

3
0\8

Gz = g32¢*%Y cos ek(z — z')dk

1:,"

—-— iely —
™ / gaze *Y cos ek(z — z')dk
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. A ’
l'lzu}cwgu

4627,%(1 - 2K?) 2 . o
U;, = { f 2 (F )cl‘ﬂu + (1 - €2Q - &%ﬂ)el‘htt}cl'ﬂex
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. . ’
"7:"}6171 €3

4k -2K?
Uss = { ‘n'rz(; 2K?)
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4671722(1 - 2A.2)‘i11¢z

Us, = { = _ E,nQei-nu}eh:u'
8k 172
P=(n-—2")

8K?
@=(-¥nmn

F = (1-2K%) + 4K 11m)

r=V1-K* m=Vi-K* K=V/B+&

n=k/ks e=kH

k1 = Longitudinal wave number = w/¢;.
¢) = Longitudinal wave velocity in R,.

Note that in the above the coordinates x,y,z have been nondimensionalized with

respect to H and the + sign correspond to z > or < z’, respectively.

(IT) Stresses
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APPENDIX B

Incident Displacement

(I) Pwave

Let us consider P-wave incident in the XZ plane. The incident and reflected

potentials can be written as :

Q(i) = eie(--nZ-i-KX-ut)

&) = a el (nZ+KX-wit)

g = b, ett(MZ+KX-wt)

The components of the displacement vector in the XZ plane, Ux, Uz, can be

derived from,

u=V®+VA(ey?¥)

where ® =3 4 o and ¥ =y,




Displacements in the xz plane are related to those in the XZ plane by the following

relations,
uy = Uxcosé and uy, = Uxsing.

The full expressions for u,, t:y, ¥, are documented below.

Uy = i{k(alcial + eiaa) — byyacosé eia:}cie(k:+£y)

uy = i{f(a1'™ + €'°%) — by28ing eiar)eie(kz+ty)

u, = i{‘rz(dleim - eia.) + bchiaz}ei!(k:-i-tl)

(1-2K?)? - 4K’n7 —4Kn(1 - K?)
N = F ’ = F




F=(1-2R*)? +4K%y1v

ay = €<, Q) = €vz2, az = —€72

k = n sind, cosp, & =nsinb, sinp, K?=¢+k?

6, = angle of incidence with the negative Z-axis in the XZ plane (0° < 8, < 90°).

¢ = angle between xz plane and XZ plane (0° < ¢ < 180° ).

(IT) SVwave

Let us consider incident SV-wave in the XZ plane:

Pl = gie(~1Z+KX~wt)

3 = agei(MmI+KX—~wt)

o) = byeie(T2Z+KX—wi)

Following the same steps as before in the P-wave, we get:

_ —4K%(1 - K?)
- F




(1-2RK%)? — 4Ky v
by = — -

uy = i{kaze'™ + vacosd[e'?s — byeior]}ete(kztHéw)

uy = i{{age‘°‘ + 7gsin¢[ei°’ - bzeiazl}eie(kz+€y)

u; = i{mae'™ + K[e“’" + he‘“’]}c““""fw

where a3 =—€1; z, k = sinb; cosp, &= sinbh, sing

and 9, is the incidence angle with the negative Z-axis in the XZ plane.
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